

Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 02

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="www.edexcel.com">www.edexcel.com</a> or <a href="www.edexcel.com">www.edexcel.com</a>, you can get in touch with us using the details on our contact us page at <a href="www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

November 2020
Publications Code 4PM1\_01\_2011\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
   Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

#### Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

#### No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

## • With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

### Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

### Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

### **General Principles for Further Pure Mathematics Marking**

(but note that specific mark schemes may sometimes override these general principles)

### Method mark for solving a 3 term quadratic equation:

#### 1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where  $|pq|=|c|$  leading to  $x=...$   
 $(ax^2+bx+c)=(mx+p)(nx+q)$  where  $|pq|=|c|$  and  $|mn|=|a|$  leading to  $x=...$ 

#### 2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and a leading to x = ...

## 3. Completing the square:

$$x^{2} + bx + c = 0$$
:  $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$ ,  $q \ne 0$  leading to  $x = ...$ 

### Method marks for differentiation and integration:

### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

# 2. Integration:

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

#### Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

**or**, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

# **Answers without working:**

The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

#### **Exact answers:**

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

# Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                            | Marks  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1                  | $(v=)8+2t-t^2$                                                                                                                                                                                                                                                                                    | B1     |
|                    | $8+2t-t^{2} = (2+t)(4-t) = 0 \Rightarrow t = 4$ Distance = $3+8\times4+4^{2}-\frac{1}{3}4^{3} = 29\frac{2}{3}$ m                                                                                                                                                                                  | M1A1   |
|                    |                                                                                                                                                                                                                                                                                                   | A1 (4) |
|                    | (accept 29.7 or better or a recurring decimal)                                                                                                                                                                                                                                                    | [4]    |
| B1<br>M1           | Correct differentiation Equate their differentiated expression (min 2 correct terms) to $0 = 0$ may be implied by their solution) and attempt to solve the 3 TQ by any valid method. Must reach $t =$ Calculator solution: Allow M1A1 if their equation and its roots are correct, otherwise M0A0 |        |
| A1<br>A1           | Correct value of $t$ (Ignore $t = -2$ if shown)<br>Correct distance, exact or min 3 s f Award A0 if value when $t = -2$ is also of excluded)<br>If there is an error in the solution of their equation but $t = 4$ is used to obtain answer this mark cannot be awarded.                          | ,      |

| Question<br>Number | Scheme                                                                                                            | Marks                                        |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| 2                  | $Vol = \pi \int_0^3 \left( e^{3x} \right)^2 dx \left( = \pi \int_0^3 e^{6x} dx \right)$                           | M1                                           |  |
|                    | $\pi \left[\frac{1}{6}e^{6x}\right]_0^3, = \left(\frac{1}{6}e^{18} - \frac{1}{6}\right)\pi$ oe                    | dM1A1,A1<br>(4)                              |  |
|                    |                                                                                                                   | [4]                                          |  |
| M1                 | Use $Vol = \pi \int y^2 dx$                                                                                       |                                              |  |
|                    | Award if pi missing here but reappears later. Limits not needed, ignore any s $dx$ may be missing.                |                                              |  |
| dM1                | Square correctly and attempt the integration. $e^{6x} \rightarrow ke^{6x}$ where $k = \pm \frac{1}{6}$ or $\pm 1$ | Limits and dx                                |  |
|                    | may be missing. Award if pi missing here but reappears later.                                                     |                                              |  |
| <b>A1</b>          | Correct integration including correct limits                                                                      | Correct integration including correct limits |  |
| <b>A1</b>          | Substitute the limits and obtain the correct answer                                                               |                                              |  |

| Scheme                                                                                                                                                                                                         | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(1+px)^{-5} = 1 + (-5)(px) + \frac{(-5)(-6)(px)^{2}}{2!} + \frac{(-5)(-6)(-7)(px)^{3}}{3!} + \frac{(-5)(-6)(-7)(-8)(px)^{4}}{4!} + \dots$                                                                     | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $=1-5px+15p^{2}x^{2}-35p^{3}x^{3}+70p^{4}x^{4}+$ $70p^{4}+2\times35p^{3}=0$ $p=-1$                                                                                                                             | A1A1 (3)  M1 A1 (2) [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Attempt the binomial expansion up to and including the term in $x^4$ . Must start with 1 and $(px)$ must appear in at least one term. Ignore terms beyond $x^4$ . 2! or 2, 3! or 6, 4! or 24 accepted          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Any 2 correct algebraic terms, simplified (1 is not algebraic) Numbers must be simplified but $(px)^n$ , $n = 2,3,4$ allowed Fully correct simplified expansion as shown but allow terms such as $+(-5px)$ etc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Use their coefficients and the <b>given</b> equation to form an equation in $p$ (If powers of $x$ included give M0)<br>Correct value of $p$ $p=-1$ only Must have come from correct working                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                | $(1+px)^{-5} = 1 + (-5)(px) + \frac{(-5)(-6)(px)^2}{2!} + \frac{(-5)(-6)(-7)(px)^3}{3!} + \frac{(-5)(-6)(-7)(-8)(px)^4}{4!} + \dots$ $= 1 - 5px + 15p^2x^2 - 35p^3x^3 + 70p^4x^4 + \dots$ $70p^4 + 2 \times 35p^3 = 0$ $p = -1$ Attempt the binomial expansion up to and including the term in $x^4$ . Must start $(px)$ must appear in at least one term. Ignore terms beyond $x^4$ . 2! or 2, 3! or 6 accepted.  Any 2 correct algebraic terms, simplified (1 is not algebraic) Numbers must but $(px)^n$ , $n = 2,3,4$ allowed Fully correct simplified expansion as shown but allow terms such as $+(-5px)^n$ . Use their coefficients and the <b>given</b> equation to form an equation in $p$ (If powincluded give M0) |

| Question<br>Number | Scheme                                                                                                                                                      | Marks                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 4(i)               | $\frac{16}{\log_4 r} = \log_4 r \Rightarrow 16 = (\log_4 r)^2 \Rightarrow \log_4 r = \pm 4$                                                                 | M1                          |
| (ii)               | $r = 4^4 = 256$ or $r = 4^{-4} = \frac{1}{256}$<br>$\log_5 9 + \log_5 12 + \log_5 15 + \log_5 18 = \log_5 (9 \times 12 \times 15 \times 18) = \log_5 29160$ | A1 (2)<br>M1                |
|                    | $1 + \log_5 x + \log_5 x^2 = \log_5 5 + \log_5 x + \log_5 x^2 = \log_5 5x^3$                                                                                | M1A1                        |
| ALT 1              | $5x^3 = 29160$ $x = 18$                                                                                                                                     | dM1<br>A1 (5) [7]           |
| ALII               | LHS = $\log_5 29160$<br>RHS = $1 + \log_5 x^3$                                                                                                              | M1<br>M1                    |
|                    | $\left(\frac{\log_{10} 29160}{\log_{10} 5}\right) = 6.387\left(=\log_5 x^3 + 1\right)$                                                                      | A1                          |
|                    | $5.387 = 3\log_5 x$<br>$\log_5 x = 1.795$                                                                                                                   | dM1                         |
|                    | x = 18                                                                                                                                                      | A1                          |
| ALT 2              | LHS = $\log_5 29160$<br>RHS = $\log_5 5 + \log_5 x^3$<br>$\log_5 29160 = \log_5 5 + \log_5 5832$<br>$5832 = x^3$<br>x = 18                                  | M1<br>M1A1<br>dM1<br>A1     |
| ALT 3              | LHS = $\log_5 5832 + \log_5 5$<br>RHS = $1 + \log_5 x^3$<br>LHS = $\log_5 5832 + 1$<br>$\log_5 5832 = \log_5 x^3$<br>$5832 = x^3$<br>x = 18                 | M1<br>M1<br>A1<br>dM1<br>A1 |
| ALT 4              | $\log_5 29160 - \log_5 x^3 = 1$ $\log_5 \frac{29160}{x^3} = 1$                                                                                              | M1M1<br>A1                  |
|                    | $\frac{29160}{x^3} = 5 \Rightarrow x^3 = 5832$ $x = 18$                                                                                                     | dM1<br>A1                   |

| <b>(i)</b>  |                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|
| <b>M1</b>   | Change base (can have base 4 or base $r$ provided the same for both logs), multiply to remove                                   |
|             | the fraction and solve to $\log_4 r =$ (or $\log_r 4 =$ ) (One answer only is sufficient)                                       |
| <b>A1</b>   | Complete to the correct answers, <b>both</b> needed                                                                             |
| (ii)        |                                                                                                                                 |
| <b>M1</b>   | Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0                                          |
| <b>M</b> 1  | Change 1 to log <sub>5</sub> 5 and obtain a single log for the RHS                                                              |
| A1          | Correct single log for RHS (Requires second M mark, not first)                                                                  |
| dM1         | Use LHS = RHS to obtain an equation without logs Depends on both previous M marks                                               |
| A1          | Correct answer                                                                                                                  |
| ALT 1       | Combined to LUC to the circle to North and the modern to the College of the design of MO                                        |
| M1          | Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0                                          |
| M1          | Combine the two logs on RHS  Correct numerical value for <b>LHS</b> . This will need a calculator so change of base need not be |
| <b>A1</b>   | seen. Equation need not be formed yet. Correct final answer implies correct value here.                                         |
|             | Otherwise min 3 sf needed                                                                                                       |
|             | This mark requires the <b>first</b> M mark to have been given – the second M mark can be M0                                     |
|             | Use LHS = RHS to obtain a value for $3\log_5 x$ or $\log_5 x$                                                                   |
| dM1         | Depends on both previous M marks                                                                                                |
| <b>A1</b>   | Correct answer. This will be exact if all numbers stored on the calculator so accept 18 only.                                   |
| ALT 2       | Correct answer. This will be exact it air numbers stored on the edicatator so accept to only.                                   |
| M1          | Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0                                          |
| 1111        | <b>Alternatively</b> we may see LHS = $\log_5 5 + \log_5 5832$ without ever seeing LHS = $\log_5 29160$                         |
| <b>M1</b>   | Combine the 2 logs on RHS and change 1 to log <sub>5</sub> 5                                                                    |
| A1          | Correct RHS (Requires second M mark, not first)                                                                                 |
| dM1         | Use LHS = RHS to obtain a value for $x^3$ Depends on both previous M marks                                                      |
| <b>A1</b>   | Correct answer                                                                                                                  |
| ALT 3       |                                                                                                                                 |
| <b>M1</b>   | Split log <sub>5</sub> 15 and combine all logs apart from log <sub>5</sub> 5 to a single log                                    |
| <b>M1</b>   | Combine the two logs on RHS                                                                                                     |
| <b>A1</b>   | Change log <sub>5</sub> 5 to 1 and have the correct log on LHS                                                                  |
| 13.64       | This mark requires the <b>first</b> M mark to have been given – the second M mark can be M0                                     |
| dM1         | Use LHS = RHS to obtain a value for $x^3$ Depends on both previous M marks                                                      |
| A1<br>ALT 4 | Correct answer                                                                                                                  |
| M1          | Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0                                          |
| M1          | Combine the two logs from the RHS                                                                                               |
| A1          | Obtain the equation shown                                                                                                       |
| dM1         | Obtain a value for $x^3$ Depends on both previous M marks                                                                       |
| A1          | Correct answer                                                                                                                  |
|             |                                                                                                                                 |

| Question<br>Number                              | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks         |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 5(a)                                            | $\sum_{r=1}^{n} (3r+5) = 8+11+14++(3n+5) = \frac{1}{2}n(8+3n+5) = \frac{1}{2}n(3n+13) *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1M1A1cso (3) |
| ALT                                             | $\sum_{r=1}^{n} (3r+5) = \sum_{1}^{n} 3r + 5n = \frac{n}{2} (3+3n) + 5n = \frac{n}{2} (13+3n) *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1M1A1cso     |
| (b)                                             | $\sum_{r=35}^{50} (3r+5) = \frac{50}{2} (13+150) - \frac{34}{2} (13+102)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1            |
|                                                 | = 2120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1 (2)        |
| (c)                                             | $\frac{n}{2}(13+3n)=385$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|                                                 | $3n^2 + 13n - 770 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1            |
|                                                 | (3n+55)(n-14)=0 $n=14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1A1 (3) [8]  |
| (a) M1 M1 A1cso  ALT M1 A1 (b) M1  A1 (c) M1 M1 | Evaluate <b>either</b> first and last terms <b>or</b> first and common difference Use either sum formula. Can be shown explicitly or implied by a correct, full substitution of $n$ and their $a$ and their $d$ or $l$ Reach the <b>given</b> result with no errors in the working. Must be the complete result, not just the RHS or there must be a conclusion eg "shown"  Split the $(3r + 5)$ into 2 parts and deal with the 5 correctly Sum $(3r)$ either by using a summation formula or by using the standard result Reach the <b>given</b> result with no errors in the working  Express the required sum as the difference of 2 sums. Second sum must have 34 terms. Use the result given in (a). <b>Using a standard formula</b> with first term and either last term or common difference scores $0/2$ as question states "hence". Calculator solutions (without showing the difference of the 2 sums first) score M0 Correct answer.  Use the result in (a) or some other valid method to form a 3 term quadratic in $n$ Solve their 3TQ by any valid means. Must reach $n = \dots$ Negative value need not be seen |               |
| A1                                              | Solve their 31Q by any valid means. Must reach $n =$ Negative value need Correct answer. $n = 14$ and no other Correct quadratic followed by correct answer scores $3/3$ Incorrect quadratic solved by calculator M0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | not be seen   |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                           | Marks              |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
|                    | $\alpha + \beta = \frac{3}{4}  \alpha\beta = -\frac{5}{4}$                                                                                                                                                                                                                                       | B1                 |  |
|                    | $\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} = \frac{2(\alpha^2 + \beta^2)}{\alpha\beta} = \frac{2((\alpha + \beta)^2 - 2\alpha\beta)}{\alpha\beta}$ $= \frac{2(\frac{9}{16} + \frac{5}{2})}{-\frac{5}{4}} = -\frac{49}{10}$                                                                   | M1                 |  |
|                    | $\frac{2\alpha}{\beta} \times \frac{2\beta}{\alpha} = 4$                                                                                                                                                                                                                                         | B1                 |  |
|                    | $x^{2} + \frac{49}{10}x + 4 = 0$ $10x^{2} + 49x + 40 = 0$                                                                                                                                                                                                                                        | M1<br>A1 (6)       |  |
| (b)                | $4(\alpha + \beta) = 3 = -\frac{p}{4}  p = -12$ $(3\alpha + \beta) \times (\alpha + 3\beta) = 3(\alpha^2 + \beta^2) + 10\alpha\beta$                                                                                                                                                             | M1A1               |  |
|                    |                                                                                                                                                                                                                                                                                                  | M1                 |  |
|                    | $= 3\left(\frac{9}{16} + \frac{5}{2}\right) - 10 \times \left(\frac{5}{4}\right) = -\frac{53}{16} \text{ oe}$                                                                                                                                                                                    | A1                 |  |
|                    | $\frac{q}{4} = -\frac{53}{16}$ $q = -\frac{53}{4}$ oe                                                                                                                                                                                                                                            | A1 (5) [11]        |  |
| (a)B1<br>M1        | Correct values for $\alpha + \beta$ and $\alpha\beta$ . Award if values not seen explicitly but ensum/product calculations for the new equation. Attempt the sum of the roots of the new equation. Must reach a <b>correct</b> expresubstitution of values of $\alpha + \beta$ and $\alpha\beta$ |                    |  |
| A1                 | Correct value for the sum. Allow if $\alpha + \beta = -\frac{3}{4}$ has been used.                                                                                                                                                                                                               |                    |  |
| B1<br>M1           | Correct value for the product of roots of the new equation.<br>Use $x^2 - (\text{sum of roots})x + \text{product of roots}$ "= 0" may be missing                                                                                                                                                 |                    |  |
| A1                 | Correct final equation, as shown or an <b>integer</b> multiple of this. Must have = 6 Allow if $\alpha + \beta = -\frac{3}{4}$ has been used.                                                                                                                                                    | U now.             |  |
| (b)<br>M1          | Use their value of $\alpha + \beta$ to obtain a value for the sum of the roots of $g(x) = 0$ and                                                                                                                                                                                                 |                    |  |
| A1<br>M1           | equate to $\pm p/4$<br>Obtain the correct value of $p$<br>Attempt the product of the roots of $g(x) = 0$ and obtain an expression ready for substitution                                                                                                                                         |                    |  |
| A1<br>A1           | of values. May use work from (a) for value of $\alpha^2 + \beta^2$ so the expression sho Obtain the correct value for the product Correct value of $q$                                                                                                                                           | own is sufficient. |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                     | Marks          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 7(a)               | $\frac{(x+1)}{(x-3)} = \frac{(4x-2)}{(x+1)}  \text{or } (x+1)^2 = (x-3)(4x-2)$ $(x+1)^2 = (4x-2)(x-3) \Rightarrow 3x^2 - 16x + 5 (=0)$ $(x-5)(3x-1) = 0 \Rightarrow x = 5, \frac{1}{3}$                                                                                                                                    | M1             |
|                    | $(x+1)^2 = (4x-2)(x-3) \Rightarrow 3x^2 - 16x + 5 (= 0)$                                                                                                                                                                                                                                                                   | A1             |
|                    | $(x-5)(3x-1)=0 \Rightarrow x=5, \frac{1}{3}$                                                                                                                                                                                                                                                                               | M1A1A1 (5)     |
| (b)                | $x = \frac{1}{3} \Rightarrow r = \frac{x+1}{x-3} = \frac{\frac{4}{3}}{\frac{-8}{3}}$                                                                                                                                                                                                                                       | M1             |
|                    | $r = -\frac{1}{2}$ : convergent as $-1 < r < 1$ *                                                                                                                                                                                                                                                                          | A1cso (2)      |
| (c)                | $S = \frac{a}{1-r} = \frac{-\frac{8}{3}}{1+\frac{1}{2}} = -\frac{16}{9} \text{ oe}$                                                                                                                                                                                                                                        | M1A1 (2)       |
| (d)                | $\frac{S}{S_n} = \frac{a}{1-r} \times \frac{1-r}{a(1-r^n)} = \frac{1}{(1-r^n)} = \frac{256}{255}$                                                                                                                                                                                                                          | M1             |
|                    | $255 = 256\left(1 - r^n\right)$                                                                                                                                                                                                                                                                                            |                |
|                    | $256r^n = 1$ $\left(-\frac{1}{2}\right)^n = \frac{1}{256}$ oe $n = 8$                                                                                                                                                                                                                                                      | dM1A1 (3) [12] |
| (a)M1<br>A1        | Form an equation using the given information about the terms                                                                                                                                                                                                                                                               | ng = 0         |
| M1                 | Simplify their equation to a correct 3TQ, terms in any order Condone missir Attempt to solve their 3TQ by any valid method. Must reach $x =$ (at least of                                                                                                                                                                  | _              |
|                    | Calculator solutions: <i>Both</i> roots correct from a correct equation scores M1A1 Incorrect equation or incorrect roots scores M0A0A0                                                                                                                                                                                    | A1             |
| <b>A1</b>          | One correct value of $x$                                                                                                                                                                                                                                                                                                   |                |
| <b>A1</b>          | Both correct values of x                                                                                                                                                                                                                                                                                                   |                |
| (b)<br>M1          | Use either of their values of $x$ , provided it is $< 1$ , to find the corresponding values of $x$ .                                                                                                                                                                                                                       | alue of $r$ No |
| 1411               | need to simplify                                                                                                                                                                                                                                                                                                           | 017.110        |
| A1cso              | Correct value of $r$ and the conclusion including the reason                                                                                                                                                                                                                                                               |                |
| (c)<br>M1          | Use their value of $r$ (not $x$ ) provided $-1 < r < 1$ (as found in (b) or here) and the second of $r < 1$ (as found in (c) or here).                                                                                                                                                                                     | he formula for |
| A1                 | the sum to infinity to obtain a value for <i>S</i> Correct value                                                                                                                                                                                                                                                           |                |
| (d)                | Correct variation                                                                                                                                                                                                                                                                                                          |                |
| M1                 | Obtain an equation in $r$ and $n$ . May use the formulae to cancel $a$ or may sub values of $a$ and $r$ in the formulae for the LHS Must equate to 256/255 Value of $r$ not needed for this mark so allow any value used.                                                                                                  |                |
| dM1                | Solve their equation of the form $r^n =$ where $-1 < r < 1$ ( $r$ not $x$ ). May use trial and improvement or logs. This mark can be given if the equation and value of $r$ are incorrect. Evidence of method needed if final answer is incorrect. If logs used condone $\log (-1/2)^n$ Correct value from correct working |                |
|                    |                                                                                                                                                                                                                                                                                                                            |                |

| Questio<br>n | Scheme                                                                                                                      | Marks     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|
| Number       |                                                                                                                             | mante     |
| 8(a)         | $5e^{-2x} + 4 = e^{2x} 	 5e^{-2x} + 4 - e^{2x} = 0 	 OR 	                               $                                   | M1        |
|              | $(5e^{-x} - e^x)(e^{-x} + e^x) = 0$ $(y-5)(y+1) = 0$                                                                        | M1        |
|              | $5e^{-x} = e^x$ $e^{2x} = 5$ $x = \frac{1}{2} \ln 5$ (oe eg $\ln \sqrt{5}$ ) $y = 5$                                        | A1        |
|              | $\left(e^{-x} = -e^x \text{ not possible}\right)$ $e^{2x} = 5$ $x = \frac{1}{2}\ln 5$                                       |           |
|              | A is $\left(\frac{1}{2}\ln 5,5\right)$                                                                                      | A1 (4)    |
| (b)          | $y = 5e^{-2x} + 4 \Rightarrow \frac{dy}{dx} = -10e^{-2x}$                                                                   | M1        |
|              | At $A \frac{dy}{dx} = -10e^{-2x} = -10 \times \frac{1}{5} = -2$                                                             | A1ft      |
|              | Eqn tgt: $y-5 = -2\left(x - \frac{1}{2}\ln 5\right)$                                                                        | dM1A1     |
|              | $y = 0 \Rightarrow x = \frac{1}{2} (5 + \ln 5) = (= x \text{ coordinate of } B)^*$                                          | A1cso (5) |
| ALT          | For last 3 marks:<br>Hence $\frac{5}{NB} = 2 \Rightarrow NB = \frac{5}{2}$                                                  | dM1A1     |
|              | $ON = \frac{1}{2} \ln 5$ $OB = \frac{1}{2} \ln 5 + \frac{5}{2} = \frac{1}{2} 5 + \ln 5 $                                    | Alcso     |
| (c)          | $C_2: \frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x} \Longrightarrow \text{grad tgt at } A \text{ is } 2 \times 5 = 10$ | B1ft      |
|              | Eqn tgt: $y-5=10\left(x-\frac{1}{2}\ln 5\right)$                                                                            | M1        |
|              | At $D: x = \frac{1}{2}(-1 + \ln 5)$                                                                                         | A1        |
|              | Area $\triangle ABD = \frac{1}{2} \left( \frac{1}{2} (5 + \ln 5) - \frac{1}{2} (-1 + \ln 5) \right) \times 5$               | M1A1      |
|              | $=\frac{15}{2}  \text{or}  7\frac{1}{2}  \left(\text{units}^2\right)$                                                       | A1 (6)    |
|              | See notes for area by "determinant" method                                                                                  |           |

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T           | 1          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|
| ALT        | For second and third marks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |            |
|            | $\frac{5}{ND} = 10 \Rightarrow ND = \frac{1}{2}$ $OD = \frac{1}{2} \ln 5 - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1          |            |
|            | ND 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,11        |            |
|            | $OD = \frac{1}{2} \ln 5 = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1          | [15]       |
|            | $\frac{\partial D}{\partial x} = \frac{\partial D}{\partial x} = $ | AI          | [13]       |
| (a)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |
| M1         | Equate the 2 curve equations. No need to simplify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |            |
| <b>M1</b>  | Factorise their equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |            |
| <b>A1</b>  | Obtain the one possible value for x (other root need not be seen; if seen it mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st be re    | jected)    |
|            | Must be exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |            |
| <b>A1</b>  | Obtain the corresponding value for y. <b>Must be exact.</b> Need not be shown in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |            |
|            | brackets. Use of $e^{2x} = 5$ leads to $y = 5$ without use of a value of x, so M1M1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OAI ca      | n be       |
|            | scored. There must only be one correct y shown. Accept $y = e^{\ln 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |            |
| <b>(b)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |
| M1         | Differentiate the equation of $C_1$ 5e <sup>-2x</sup> $\rightarrow ke^{-2x}$ where $k = \pm 5$ or $\pm 10$ and no in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ntegrati    | on seen    |
| A1ft       | Grad at $A = -2$ follow through their $x$ coordinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |
| dM1        | Obtain the equation of the tangent at A using their gradient and their coordinates of the tangent at A using their gradient and their coordinates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ates of A   | <b>1</b> . |
|            | Can be in any form but if $y = mx + c$ is used a value for c must be found.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |            |
|            | Gradient of the tangent must be numerical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |            |
| A1         | Correct equation in any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |            |
| A1cso      | Correct <i>x</i> coordinate of <i>B</i> obtained from correct working.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |            |
| ALT        | For last 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |            |
| dM1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd the la   | -noth      |
| UIVII      | Use their <i>y</i> coordinate of <i>A</i> and their (numerical) gradient of the tangent to find the length <i>NB</i> (where <i>N</i> is the foot of the perpendicular from <i>A</i> to the <i>x</i> -axis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |            |
| <b>A1</b>  | Correct length of <i>NB</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |            |
| A1cso      | Add the $x$ coordinate of $A$ to obtain the $x$ coordinate of $B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |            |
| (c)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |
| B1ft       | Correct gradient of tangent to $C_2$ at $A$ follow through their $x$ coordinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |
| M1         | Obtain an equation for the tangent using their gradient and their coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of A        |            |
|            | Gradient of the tangent must be numerical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |            |
| A1         | Correct x coordinate of D (exact or minimum 3 sf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |            |
| M1         | Use a correct formula for the area of a triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with their y coordinate of A, the first triangle with the first tria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | neir x co   | ordinate   |
| A 1        | of $D$ and the <b>given</b> $x$ coordinate of $B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |            |
| <b>A1</b>  | Correct, unsimplified area Allow use of correct but non-exact coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |            |
| <b>A1</b>  | Correct area Accept only $7\frac{1}{2}$ , $\frac{15}{2}$ or 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |
|            | Heron's formula: Nos which may be seen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            |
|            | $AB = \frac{5\sqrt{5}}{2}, AD = \frac{\sqrt{101}}{2}, BD = 3, s = \frac{1}{2}(a+b+c) = 6.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |            |
| ALT        | For second and third marks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |            |
| <b>M1</b>  | Use their y coordinate of A and their gradient of the tangent to find the length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n <i>ND</i> |            |
| <b>A1</b>  | Use the $x$ coordinate of $A$ to obtain the $x$ coordinate of $D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |

**ALT** Area by "determinant" method:

Eg Area =  $\frac{1}{2}\begin{vmatrix} \frac{1}{2}\ln 5 & \frac{1}{2}(5+\ln 5) & \frac{1}{2}(\ln 5-1) & \frac{1}{2}\ln 5 \\ 5 & 0 & 0 & 5 \end{vmatrix}$  y coordinates of B and D must be 0 Must include the ½ and have 4 sets of coordinates with first and last the same. **M1** 

 $= \frac{1}{2} \left( \frac{1}{2} (\ln 5 - 1) \times 5 - \frac{1}{2} (\ln 5 + 1) \right)$  Allow use of correct but non-exact coordinates **A1** 

Correct area Accept only  $7\frac{1}{2}$ ,  $\frac{15}{2}$  or 7.5 **Must be positive**  $\mathbf{A1}$ 

| Question<br>Number | Scheme                                                                                            | Marks                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 9(a)               | $y = \frac{2+4x-x^2}{2x+1} \implies x^2 - 4x - 2 + 2yx + y \ (=0)$                                |                                                                                 |
|                    | $x^{2} + (2y-4)x + (y-2) = 0$                                                                     | M1A1A1 (3)                                                                      |
| <b>(b)</b>         | $\left(2y-4\right)^2 \ge 4\left(y-2\right)$                                                       | M1                                                                              |
|                    | $4y^2 - 16y + 16 = 4y - 8 \Rightarrow 4y^2 - 20y + 24 = 0$                                        | M1A1                                                                            |
|                    | $y \le 2 \text{ or } y \ge 3$                                                                     | A1cso (4)                                                                       |
| (c)                | $y = \frac{2 + 4x - x^2}{2x + 1}$                                                                 |                                                                                 |
|                    | $\frac{dy}{dx} = \frac{(4-2x)(2x+1)-2(2+4x-x^2)}{(2x+1)^2}$ See notes for product rule method     | M1A1A1                                                                          |
|                    | $\frac{dy}{dx} = 0 \Rightarrow (4-2x)(2x+1)-2(2+4x-x^2) = 0$                                      |                                                                                 |
|                    | $2x(x+1) = 0 \Rightarrow x = 0, -1$                                                               | M1 A1                                                                           |
|                    | stationary points are $(0,2)(-1,3)$                                                               | A1 (6)                                                                          |
| ALT                | $x^{2} + (2y - 4)x + (y - 2) = 0 \Rightarrow 2x + (2y - 4) + 2\frac{dy}{dx}x + \frac{dy}{dx} = 0$ | M1A1A1                                                                          |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow x + y = 2$                                       | M1                                                                              |
|                    | (using (b)) stationary points are $(0,2)(-1,3)$                                                   | A1A1                                                                            |
|                    | y (12)                                                                                            |                                                                                 |
| (d)                | (-1,3)                                                                                            | B1 curve (i) M1A1 (M1 finding coords, A1 correct (oe or min 2dp) and on diagram |
|                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                            | (ii) B1<br>(iii) B1ft<br>(5)                                                    |
|                    | or $-0.45$ or $4.45$ $x = -\frac{1}{2}$                                                           | [18]                                                                            |

| (a)M1      | Re-write the equation of <i>C</i> without fractions and rearrange to the required form.                                                                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1         | Correct value for $a$ and either $b$ or $c$ . These values need not be stated explicitly.                                                                                                                                                      |
| A1         | Fully correct equation. Values of a, b and c need not be stated explicitly. Condone missing                                                                                                                                                    |
|            | brackets round " $y - 2$ ". Award this mark when the equation is reached – isw any listing of                                                                                                                                                  |
|            | values with incorrect signs.                                                                                                                                                                                                                   |
| <b>(b)</b> |                                                                                                                                                                                                                                                |
| M1         | Use " $b^2 \ge 4ac$ " for their equation                                                                                                                                                                                                       |
| M1         | Re-arrange their inequality to a 3TQ in y. Allow an equation here.                                                                                                                                                                             |
| A1         | Correct 3TQ, as shown or any equivalent                                                                                                                                                                                                        |
| A1cso      | Deduce the CVs (need not be shown explicitly) and state the (given) inequalities. There must be no errors in the working but the equation, if correct, can be solved easily so no working need be shown. Condone use of "and" instead of "or". |
| (c)        | morning need to the min to the transfer and the transfer to the                                                                                                                                                                                |
| M1         | Differentiate the equation of C using the quotient rule. The denominator must be correct and                                                                                                                                                   |
|            | the numerator must consist of the difference of 2 terms of the type shown. The product rule                                                                                                                                                    |
| <b>A1</b>  | can be used. Either numerator term correct                                                                                                                                                                                                     |
| A1         | Fully correct numerator                                                                                                                                                                                                                        |
| ALT:       | <b>Product Rule</b> $y = (2+4x-x^2)(2x+1)^{-1}$                                                                                                                                                                                                |
| M1A1       | $\frac{dy}{dx} = (4-2x)(2x+1)^{-1} - 2(2+4x-x^2)(2x+1)^{-2}$                                                                                                                                                                                   |
| <b>A1</b>  |                                                                                                                                                                                                                                                |
|            | M1: rewrite without denominator and attempt product rule. Difference of 2 terms of the                                                                                                                                                         |
|            | form shown needed (Difference because of the negative power) A1 Either term correct A1 Second term correct                                                                                                                                     |
| M1         | Equate the numerator of their derivative to 0 and solve to $x =$ (any valid method of solving                                                                                                                                                  |
|            |                                                                                                                                                                                                                                                |
|            | a quadratic with 2 or 3 terms) If product rule used must multiply through by $(2x+1)^2$                                                                                                                                                        |
| A1         | Both x values correct                                                                                                                                                                                                                          |
| A1         | Both stationary points correct                                                                                                                                                                                                                 |
| ALT<br>M1  | Use implicit differentiation on the re-arranged equation                                                                                                                                                                                       |
| A1         | Correct derivative of $(2y-4)x$ (inc use of product rule)                                                                                                                                                                                      |
| A1<br>A1   | ` '                                                                                                                                                                                                                                            |
| AI         | Fully correct derivative                                                                                                                                                                                                                       |
| M1         | Set $\frac{dy}{dx} = 0$ and use the result from (b) to obtain solutions                                                                                                                                                                        |
| <b>A1</b>  | One correct stationary point                                                                                                                                                                                                                   |
| A1         | Both correct stationary points                                                                                                                                                                                                                 |
| (d)<br>B1  | Shape: Two parts, one above $y = 3$ and the other below $y = 2$                                                                                                                                                                                |
| (i)M1      | Shape: Two parts, one above $y = 3$ and the other below $y = 2$<br>Attempt to find the x coordinates of the crossing points                                                                                                                    |
|            | Correct coordinates shown on their sketch, 2 crossing points only. $y = 0$ need not be seen.                                                                                                                                                   |
| <b>A1</b>  | There must be a curve through these points.                                                                                                                                                                                                    |
| (ii)B1     | The asymptote must be drawn and labelled (by its equation or by showing the <i>x</i> coordinate                                                                                                                                                |
|            | of the point where it crosses the <i>x</i> -axis). There must be at least one part of the curve which is                                                                                                                                       |
|            | asymptotic to the line $x = -\frac{1}{2}$ . No part of the curve should touch/cross the asymptote or                                                                                                                                           |
|            | curve dramatically away from the line.                                                                                                                                                                                                         |
| (iii)B1ft  | Label the stationary points with their coords. Follow through provided the result is sensible.                                                                                                                                                 |

| Question<br>Number | Scheme                                                                                                                                                                                               | Marks         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 10(a)              | $\cos(A+B) + \cos(A-B) = \cos A \cos B - \sin A \sin B + \cos A \cos B + \sin A \sin B$                                                                                                              | M1            |
|                    | $= 2\cos A\cos B^*$                                                                                                                                                                                  | A1 cso (2)    |
| (b)                | Let $A + B = P$ , $A - B = Q \implies A = \frac{1}{2}(P + Q)$ , $B = \frac{1}{2}(P - Q)$                                                                                                             | M1            |
|                    | As $\cos(A+B) + \cos(A-B) = 2\cos A\cos B$                                                                                                                                                           |               |
| ALT                | $\cos P + \cos Q = 2\cos\frac{1}{2}(P+Q)\cos\frac{1}{2}(P-Q)^*$                                                                                                                                      | M1A1cso (3)   |
|                    | Let $A = \frac{1}{2}(P+Q)$ , $B = \frac{1}{2}(P-Q) \Rightarrow A+B=P$ , $A-B=Q$                                                                                                                      | M1            |
|                    | As $2\cos A\cos B = \cos(A+B) + \cos(A-B)$                                                                                                                                                           |               |
|                    | $2\cos\frac{1}{2}(P+Q)\cos\frac{1}{2}(P-Q) = \cos P + \cos Q  *$                                                                                                                                     | M1A1cso       |
| (c)                | $\cos 5\theta + \cos 7\theta = 2\cos 6\theta \cos \theta = 0$                                                                                                                                        | M1            |
|                    | $\cos 6\theta = 0 \Rightarrow 6\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2} \Rightarrow \theta = \frac{\pi}{12}, \frac{\pi}{4} \left( \text{or } \frac{3\pi}{12} \right), \frac{5\pi}{12}$ | A1A1          |
|                    | $\cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$                                                                                                                                                  | A1 (4)        |
| ( <b>d</b> )       | $\cos 8x + 2\cos 6x + \cos 4x = (\cos 8x + \cos 6x) + (\cos 6x + \cos 4x)$                                                                                                                           |               |
|                    | $= 2\cos 7x\cos x + 2\cos 5x\cos x$                                                                                                                                                                  | M1            |
|                    | $= 2\cos x(\cos 7x + \cos 5x) = 2\cos x \times 2(\cos 6x \cos x), = 4\cos 6x \cos^2 x$                                                                                                               | dM1,A1cso (3) |
| ALT 1              | $\cos 8x + 2\cos 6x + \cos 4x = (\cos 8x + \cos 4x) + 2\cos 6x$<br>= $2\cos 6x \cos 2x + 2\cos 6x$                                                                                                   | M1            |
|                    | $= 2\cos 6x(\cos 2x + 1) = 2\cos 6x(2\cos^2 x - 1 + 1) = 4\cos 6x\cos^2 x$                                                                                                                           | dM1A1cso (3)  |
| ALT 2              | Working from right to left                                                                                                                                                                           |               |
|                    | $4\cos 6x \cos^2 x = 4\cos 6x \times \frac{1}{2}(\cos 2x + 1) = 2\cos 6x \cos 2x + 2\cos 6x$                                                                                                         | M1            |
|                    | $=\cos 8x + \cos 4x + 2\cos 6x *$                                                                                                                                                                    | dM1A1cso (3)  |

| M1        |
|-----------|
| A1        |
| dM1A1 (4) |
| [16]      |
|           |
|           |
| M1        |
|           |
| (         |

| (a)        |                                                                                                   |  |
|------------|---------------------------------------------------------------------------------------------------|--|
| <b>M1</b>  | Use the standard formulae. This is a "show that" question so these formulae must be written       |  |
|            | out in full. Both sides of the result must be seen although the working may appear between        |  |
|            | them as seen in the scheme.                                                                       |  |
| A1cso      | Final given result. Do not award if the expansions shown are not in the correct order (this       |  |
|            | suggests incorrect signs in the formulae).                                                        |  |
| <b>(b)</b> |                                                                                                   |  |
| <b>M1</b>  | Use $A + B = P$ , $A - B = Q$ to obtain A and B in terms of P and Q                               |  |
| <b>M1</b>  | Substitute in the result from (a) to obtain an identity in $P$ and $Q$ only                       |  |
| A1cso      | Correct result reached with no errors seen                                                        |  |
| ALT        | Working right to left: Notes similar to above                                                     |  |
| <b>(c)</b> |                                                                                                   |  |
| <b>M1</b>  | Use the result from (b) to show that $(2)\cos 6\theta \cos(\pm \theta) = 0$                       |  |
| <b>A1</b>  | Obtain one correct solution of $\cos 6\theta = 0$ . Allow if in decimal form but must be radians. |  |
| <b>A1</b>  | Two further correct solutions and no more within the range.                                       |  |
|            | If any of the 3 solutions of $\cos 6\theta = 0$ is not exact do not award this mark.              |  |
| <b>A1</b>  | State the solution of $\cos(\pm\theta) = 0$ . Must be exact unless this is penalised above.       |  |
| NB         | If answers are given in degrees deduct 2A marks from any that would otherwise have been           |  |
|            | given.                                                                                            |  |
|            | (Answers in degrees but then changed to radians are acceptable – mark the radian answers.)        |  |
|            | Ignore extra answers outside the stated range – any within are incorrect.                         |  |
| <b>(d)</b> |                                                                                                   |  |
| <b>M1</b>  | Use the result from (a) or (b) once. Allow if one or both "2"s are missing                        |  |
| dM1        | Use the result from (a) or (b) again. Must include both "2"s this time. Depends on previous       |  |
|            | M mark.                                                                                           |  |
| A1cso      | Reach the <b>given</b> result with no errors seen                                                 |  |

| ALT 1     |                                                                                                               |  |
|-----------|---------------------------------------------------------------------------------------------------------------|--|
| M1        | Use the result from (a) or (b). Allow if the "2" is missing.                                                  |  |
| dM1       | Factorise and use the <i>correct</i> double angle formula on $\cos 2x$ Depends on the previous M              |  |
|           | mark                                                                                                          |  |
| A1cso     | Reach the <b>given</b> result with no errors seen                                                             |  |
| ALT 2     |                                                                                                               |  |
| M1        | Use the <i>correct</i> half angle formula on $\cos^2 x$                                                       |  |
| dM1A1     | M1: Use the result from (a) or (b)                                                                            |  |
| cso       | A1: reach the <b>given</b> result with no errors seen                                                         |  |
| (e)M1     | Obtain a function which can be integrated <b>either</b> by using the <b>given</b> result from (d) <b>OR</b> . |  |
|           | deriving the same result. Allow if 1/4 is missing. (Integration by Parts – send to review)                    |  |
| <b>A1</b> | Correct integration (must have included the ¼) Limits not needed for these 2 marks.                           |  |
| dM1       | Correct use of the given limits. All sines are 0 at the lower limit so these need not be shown                |  |
| <b>A1</b> | Correct final answer which must be <b>exact and stated as a single fraction</b> .                             |  |
|           |                                                                                                               |  |