Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE
In Further Pure Mathematics (4PM1)
Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2020
Publications Code 4PM1_01_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.
If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \quad \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \quad \text { leading to } x=\ldots .
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and leading to $x=\ldots$.

3. Completing the square:

$$
x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration:

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".
General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question Number	Scheme	Marks
$\mathbf{1}$	$(v=) 8+2 t-t^{2}$ $8+2 t-t^{2}=(2+t)(4-t)=0 \Rightarrow t=4$ Distance $=3+8 \times 4+4^{2}-\frac{1}{3} 4^{3}=29 \frac{2}{3} \mathrm{~m}$ (accept 29.7 or better or a recurring decimal)	M1A1
B1	Correct differentiation Equate their differentiated expression (min 2 correct terms) to $0(=0$ may be implied by their solution) and attempt to solve the 3 TQ by any valid method. Must reach $t=\ldots$	
Calculator solution: Allow M1A1 if their equation and its roots are correct, otherwise		
A1	M0A0 Correct value of t (Ignore $t=-2$ if shown) Correct distance, exact or min 3 s f Award A0 if value when $t=-2$ is also offered (and not excluded) If there is an error in the solution of their equation but $t=4$ is used to obtain the correct answer this mark cannot be awarded.	

Question Number	Scheme	Marks
2	$\begin{aligned} & \mathrm{Vol}=\pi \int_{0}^{3}\left(\mathrm{e}^{3 x}\right)^{2} \mathrm{~d} x\left(=\pi \int_{0}^{3} \mathrm{e}^{6 x} \mathrm{~d} x\right) \\ & \pi\left[\frac{1}{6} \mathrm{e}^{6 x}\right]_{0}^{3},=\left(\frac{1}{6} \mathrm{e}^{18}-\frac{1}{6}\right) \pi \text { oe } \end{aligned}$	M1 dM1A1,A1 (4)
M1	Use Vol $=\pi \int y^{2} \mathrm{~d} x$ Award if pi missing here but reappears later. Limits not needed, ignore any shown. $\mathrm{d} x$ may be missing.	
dM1	Square correctly and attempt the integration. $\mathrm{e}^{6 x} \rightarrow k \mathrm{e}^{6 x}$ where $k= \pm \frac{1}{6}$ or ± 1 Limits and $\mathrm{d} x$	
A1	Correct integration including correct limits	
A1	Substitute the limits and obtain the correct answer	

Question Number	Scheme Marks
3(a) (b)	$\begin{aligned} & (1+p x)^{-5}=1+(-5)(p x)+\frac{(-5)(-6)(p x)^{2}}{2!}+\frac{(-5)(-6)(-7)(p x)^{3}}{3!} \\ & +\frac{(-5)(-6)(-7)(-8)(p x)^{4}}{4!}+\ldots \\ & =1-5 p x+15 p^{2} x^{2}-35 p^{3} x^{3}+70 p^{4} x^{4}+\ldots \\ & 70 p^{4}+2 \times 35 p^{3}=0 \\ & p=-1 \end{aligned}$
(a) M1 A1 A1 (b) M1 A1	Attempt the binomial expansion up to and including the term in x^{4}. Must start with 1 and $(p x)$ must appear in at least one term. Ignore terms beyond x^{4}. 2 ! or 2,3 ! or 6,4 ! or 24 accepted. Any 2 correct algebraic terms, simplified (1 is not algebraic) Numbers must be simplified but $(p x)^{n}, n=2,3,4$ allowed Fully correct simplified expansion as shown but allow terms such as $+(-5 p x)$ etc Use their coefficients and the given equation to form an equation in p (If powers of x included give M0) Correct value of $p \quad p=-1$ only Must have come from correct working

Question Number	Scheme	Marks
4(i)	$\frac{16}{\log _{4} r}=\log _{4} r \Rightarrow 16=\left(\log _{4} r\right)^{2} \Rightarrow \log _{4} r= \pm 4$	M1
(ii)	$r=4^{4}=256 \quad \text { or } r=4^{-4}=\frac{1}{256}$	A1 (2)
	$\log _{5} 9+\log _{5} 12+\log _{5} 15+\log _{5} 18=\log _{5}(9 \times 12 \times 15 \times 18)=\log _{5} 29160$	M1
	$1+\log _{5} x+\log _{5} x^{2}=\log _{5} 5+\log _{5} x+\log _{5} x^{2}=\log _{5} 5 x^{3}$	M1A1
ALT 1	$5 x^{3}=29160$	dM1
	$x=18$	A1 (5) [7]
	LHS $=\log _{5} 29160$	M1
	RHS $=1+\log _{5} x^{3}$	M1
	$\left(\frac{\log _{10} 29160}{\log _{10} 5}\right)=6.387 \ldots\left(=\log _{5} x^{3}+1\right)$	A1
	5.387... $=3 \log _{5} x$	dM1
	$\log _{5} x=1.795 \ldots$	
	$x=18$	A1
ALT 2	LHS $=\log _{5} 29160$	M1
	RHS $=\log _{5} 5+\log _{5} x^{3}$	M1A1
	$\log _{5} 29160=\log _{5} 5+\log _{5} 5832$	
	$5832=x^{3}$	dM1
	$x=18$	A1
ALT 3	LHS $=\log _{5} 5832+\log _{5} 5$	M1
	RHS $=1+\log _{5} x^{3}$	M1
	LHS $=\log _{5} 5832+1$	A1
	$\log _{5} 5832=\log _{5} x^{3}$	
	$5832=x^{3}$	dM1
	$x=18$	A1
ALT 4	$\log _{5} 29160-\log _{5} x^{3}=1$	M1M1
	$\log _{5} \frac{29160}{x^{3}}=1$	A1
	$\frac{29160}{x^{3}}=5 \Rightarrow x^{3}=5832$	dM1
	$x=18$	A1

$\begin{gathered} \hline \text { (i) } \\ \text { M1 } \end{gathered}$	Change base (can have base 4 or base r provided the same for both logs), multiply to remove the fraction and solve to $\log _{4} r=\ldots$ (or $\log _{r} 4=\ldots$) (One answer only is sufficient)
A1	Complete to the correct answers, both needed
(ii)	
M1	Combine the LHS logs to a single log. Numbers should be multiplied - if added award M0 Change 1 to $\log _{5} 5$ and obtain a single log for the RHS
A1	Correct single log for RHS (Requires second M mark, not first)
dM1	Use LHS = RHS to obtain an equation without logs Depends on both previous M marks
A1	Correct answer
ALT 1	
M1	Combine the LHS logs to a single log. Numbers should be multiplied - if added award M0
M1	Combine the two logs on RHS
A1	Correct numerical value for LHS. This will need a calculator so change of base need not be seen. Equation need not be formed yet. Correct final answer implies correct value here. Otherwise min 3 sf needed This mark requires the first M mark to have been given - the second M mark can be M0
dM1	Use LHS $=$ RHS to obtain a value for $3 \log _{5} x$ or $\log _{5} x$ Depends on both previous M marks
A1	Correct answer. This will be exact if all numbers stored on the calculator so accept 18 only.
ALT 2	
M1	Combine the LHS logs to a single log. Numbers should be multiplied - if added award M0 Alternatively we may see LHS $=\log _{5} 5+\log _{5} 5832$ without ever seeing LHS $=\log _{5} 29160$
M1	Combine the 2 logs on RHS and change 1 to $\log _{5} 5$
A1	Correct RHS (Requires second M mark, not first)
dM1	Use LHS = RHS to obtain a value for x^{3} Depends on both previous M marks
A1	Correct answer
ALT 3	
M1	Split $\log _{5} 15$ and combine all logs apart from $\log _{5} 5$ to a single \log
M1	Combine the two logs on RHS
A1	Change $\log _{5} 5$ to 1 and have the correct log on LHS
	This mark requires the first M mark to have been given - the second M mark can be M0
dM1	Use LHS = RHS to obtain a value for x^{3} Depends on both previous M marks
A1	Correct answer
ALT 4	
M1	Combine the LHS logs to a single log. Numbers should be multiplied - if added award M0
M1	Combine the two logs from the RHS
A1	Obtain the equation shown
dM1	Obtain a value for x^{3} Depends on both previous M marks
A1	Correct answer

$\begin{gathered} \text { Questio } \\ \text { n } \\ \text { Number } \end{gathered}$	Scheme	Marks
8(a)	$5 \mathrm{e}^{-2 x}+4=\mathrm{e}^{2 x} \quad 5 \mathrm{e}^{-2 x}+4-\mathrm{e}^{2 x}=0 \quad \text { OR } \quad y=\frac{5}{y}+4 \Rightarrow y^{2}-4 y-5=0$	M1
	$\left(5 \mathrm{e}^{-x}-\mathrm{e}^{x}\right)\left(\mathrm{e}^{-x}+\mathrm{e}^{x}\right)=0 \quad(y-5)(y+1)=0$	M1
	$5 \mathrm{e}^{-x}=\mathrm{e}^{x} \quad \mathrm{e}^{2 x}=5 \quad x=\frac{1}{2} \ln 5(\text { oe eg } \ln \sqrt{5}) \quad y=5$	A1
	$\begin{array}{l\|l} \left(\mathrm{e}^{-x}=-\mathrm{e}^{x} \text { not possible }\right) & \mathrm{e}^{2 x}=5 \quad x=\frac{1}{2} \ln 5 \end{array}$	
	$A \text { is }\left(\frac{1}{2} \ln 5,5\right)$	A1 (4)
(b)	$y=5 \mathrm{e}^{-2 x}+4 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-10 \mathrm{e}^{-2 x}$	M1
	At $A \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-10 \mathrm{e}^{-2 x}=-10 \times \frac{1}{5}=-2$	A1ft
	Eqn tgt: $\quad y-5=-2\left(x-\frac{1}{2} \ln 5\right)$	dM1A1
	$y=0 \Rightarrow x=\frac{1}{2}(5+\ln 5) \quad(=x \text { coordinate of } B)^{*}$	A1cso (5)
ALT	For last 3 marks: Hence $\frac{5}{N B}=2 \Rightarrow N B=\frac{5}{2}$	dM1A1
	$\begin{aligned} & O N=\frac{1}{2} \ln 5 \\ & O B=\frac{1}{2} \ln 5+\frac{5}{2}=\frac{1}{2} 5+\ln 5 \end{aligned}$	A1cso
(c)	$C_{2}: \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{2 x} \Rightarrow$ grad tgt at A is $2 \times 5=10$	B1ft
	Eqn tgt: $\quad y-5=10\left(x-\frac{1}{2} \ln 5\right)$	M1
	$\text { At } D: x=\frac{1}{2}(-1+\ln 5)$	A1
	$\text { Area } \triangle A B D=\frac{1}{2}\left(\frac{1}{2}(5+\ln 5)-\frac{1}{2}(-1+\ln 5)\right) \times 5$	M1A1
	$=\frac{15}{2} \text { or } 7 \frac{1}{2}\left(\text { units }^{2}\right)$ See notes for area by "determinant" method	A1 (6)

ALT	For second and third marks: $\begin{aligned} & \frac{5}{N D}=10 \Rightarrow N D=\frac{1}{2} \\ & O D=\frac{1}{2} \ln 5-\frac{1}{2} \end{aligned}$
(a)	
M1	Equate the 2 curve equations. No need to simplify
M1	Factorise their equation
A1	Obtain the one possible value for x (other root need not be seen; if seen it must be rejected) Must be exact
A1	Obtain the corresponding value for y. Must be exact. Need not be shown in coordinate brackets. Use of $\mathrm{e}^{2 x}=5$ leads to $y=5$ without use of a value of x, so M1M1A0A1 can be scored. There must only be one correct y shown. Accept $y=\mathrm{e}^{\ln 5}$
(b)	
M1	Differentiate the equation of $C_{1} 5 \mathrm{e}^{-2 x} \rightarrow k \mathrm{e}^{-2 x}$ where $k= \pm 5$ or ± 10 and no integration seen
A1ft	Grad at $A=-2$ follow through their x coordinate
dM1	Obtain the equation of the tangent at A using their gradient and their coordinates of A. Can be in any form but if $y=m x+c$ is used a value for c must be found.
	Gradient of the tangent must be numerical.
A1	Correct equation in any form
A1cso	Correct x coordinate of B obtained from correct working.
ALT	For last 3 marks
dM1	Use their y coordinate of A and their (numerical) gradient of the tangent to find the length $N B$ (where N is the foot of the perpendicular from A to the x-axis)
A1	Correct length of $N B$
A1cso (c)	Add the x coordinate of A to obtain the x coordinate of B
B1ft	Correct gradient of tangent to C_{2} at A follow through their x coordinate
M1	Obtain an equation for the tangent using their gradient and their coordinates of A Gradient of the tangent must be numerical.
A1	Correct x coordinate of D (exact or minimum 3 sf)
M1	Use a correct formula for the area of a triangle with their y coordinate of A, their x coordinate of D and the given x coordinate of B
A1	Correct, unsimplified area Allow use of correct but non-exact coordinates
A1	Correct area Accept only $7 \frac{1}{2}, \frac{15}{2}$ or 7.5
	Heron's formula: Nos which may be seen: $A B=\frac{5 \sqrt{5}}{2}, A D=\frac{\sqrt{101}}{2}, B D=3, s=\frac{1}{2}(a+b+c)=6.8$
ALT	For second and third marks:
M1	Use their y coordinate of A and their gradient of the tangent to find the length $N D$
A1	Use the x coordinate of A to obtain the x coordinate of D

ALT

M1
Area by "determinant" method:
Eg Area $=\frac{1}{2}\left|\begin{array}{cccc}\frac{1}{2} \ln 5 & \frac{1}{2}(5+\ln 5) & \frac{1}{2}(\ln 5-1) & \frac{1}{2} \ln 5 \\ 5 & 0 & 0 & 5\end{array}\right| \quad y$ coordinates of B and D must be 0
Must include the $1 / 2$ and have 4 sets of coordinates with first and last the same.
A1 $=\frac{1}{2}\left(\frac{1}{2}(\ln 5-1) \times 5-\frac{1}{2}(\ln 5+1)\right)$ Allow use of correct but non-exact coordinates
A1 Correct area Accept only $7 \frac{1}{2}, \frac{15}{2}$ or 7.5 Must be positive

Question Number	Scheme	Marks
9(a)	$\begin{aligned} & y=\frac{2+4 x-x^{2}}{2 x+1} \Rightarrow x^{2}-4 x-2+2 y x+y(=0) \\ & x^{2}+(2 y-4) x+(y-2)=0 \end{aligned}$	M1A1A1 (3)
(b)	$\begin{aligned} & (2 y-4)^{2} \geq 4(y-2) \\ & 4 y^{2}-16 y+16=4 y-8 \Rightarrow 4 y^{2}-20 y+24=0 \\ & \quad y \leq 2 \text { or } y \geq 3 \end{aligned}$	M1 M1A1 A1cso (4)
(c)	$\begin{aligned} & y=\frac{2+4 x-x^{2}}{2 x+1} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(4-2 x)(2 x+1)-2\left(2+4 x-x^{2}\right)}{(2 x+1)^{2}} \text { See notes for product rule method } \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow(4-2 x)(2 x+1)-2\left(2+4 x-x^{2}\right)=0 \end{aligned}$	M1A1A1
	$2 x(x+1)=0 \Rightarrow x=0,-1$ stationary points are $(0,2)(-1,3)$	M1 A1 A1 (6)
ALT	$\begin{aligned} & x^{2}+(2 y-4) x+(y-2)=0 \Rightarrow 2 x+(2 y-4)+2 \frac{\mathrm{~d} y}{\mathrm{~d} x} x+\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow x+y=2 \end{aligned}$	M1A1A1 M1
	(using (b)) stationary points are (0,2) (-1,3)	A1A1
(d)	$(-1,3)$	B1 curve (i) M1A1 (M1 finding coords, A1 correct (oe or min 2dp) and on diagram
	$2-\sqrt{6}$ or -0.45 O $x=-\frac{1}{2}$ $\quad$$2+\sqrt{6}$ or 4.45$\quad x$	(ii) B 1 (iii) B 1 ft (5) [18]

Question Number	Scheme	Marks
10(a)	$\cos (A+B)+\cos (A-B)=\cos A \cos B-\sin A \sin B+\cos A \cos B+\sin A \sin B$	M1
	$=2 \cos A \cos B *$	A1 cso (2)
(b)	Let $A+B=P, \quad A-B=Q \Rightarrow A=\frac{1}{2}(P+Q), \quad B=\frac{1}{2}(P-Q)$	M1
	As $\cos (A+B)+\cos (A-B)=2 \cos A \cos B$	
ALT	$\cos P+\cos Q=2 \cos \frac{1}{2}(P+Q) \cos \frac{1}{2}(P-Q) *$	M1A1cso (3)
	Let $A=\frac{1}{2}(P+Q), \quad B=\frac{1}{2}(P-Q) \Rightarrow A+B=P, A-B=Q$ As $2 \cos A \cos B=\cos (A+B)+\cos (A-B)$	M1
	$2 \cos \frac{1}{2}(P+Q) \cos \frac{1}{2}(P-Q)=\cos P+\cos Q$	M1A1cso
(c)	$\begin{aligned} & \cos 5 \theta+\cos 7 \theta=2 \cos 6 \theta \cos \theta=0 \\ & \cos 6 \theta=0 \Rightarrow 6 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \Rightarrow \theta=\frac{\pi}{12}, \frac{\pi}{4}\left(\text { or } \frac{3 \pi}{12}\right), \frac{5 \pi}{12} \end{aligned}$	M1 A1A1
	$\cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}$	A1 (4)
(d)	$\cos 8 x+2 \cos 6 x+\cos 4 x=(\cos 8 x+\cos 6 x)+(\cos 6 x+\cos 4 x)$	
	$=2 \cos 7 x \cos x+2 \cos 5 x \cos x$	M1
	$=2 \cos x(\cos 7 x+\cos 5 x)=2 \cos x \times 2(\cos 6 x \cos x),=4 \cos 6 x \cos ^{2} x *$	dM1,A1cso (3)
ALT 1	$\begin{aligned} & \cos 8 x+2 \cos 6 x+\cos 4 x=(\cos 8 x+\cos 4 x)+2 \cos 6 x \\ & =2 \cos 6 x \cos 2 x+2 \cos 6 x \end{aligned}$	M1
	$=2 \cos 6 x(\cos 2 x+1)=2 \cos 6 x\left(2 \cos ^{2} x-1+1\right)=4 \cos 6 x \cos ^{2} x *$	dM1A1cso (3)
ALT 2	Working from right to left	
	$4 \cos 6 x \cos ^{2} x=4 \cos 6 x \times \frac{1}{2}(\cos 2 x+1)=2 \cos 6 x \cos 2 x+2 \cos 6 x$	
	$=\cos 8 x+\cos 4 x+2 \cos 6 x$	dM1A1cso (3)

ALT 1	
M1	Use the result from (a) or (b). Allow if the " 2 " is missing.
dM1	Factorise and use the correct double angle formula on $\cos 2 x$ Depends on the previous M
mark	
A1cso	Reach the given result with no errors seen
ALT 2	
M1	Use the correct half angle formula on $\cos ^{2} x$
dM1A1	M1: Use the result from (a) or (b)
cso	A1: reach the given result with no errors seen
(e)M1	Obtain a function which can be integrated either by using the given result from (d) OR. deriving the same result. Allow if $1 / 4$ is missing. (Integration by Parts - send to review)
A1	Correct integration (must have included the $1 / 4$) Limits not needed for these 2 marks. dM1 Correct use of the given limits. All sines are 0 at the lower limit so these need not be shown A1

